Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode
نویسنده
چکیده
Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O2 and temperature). Sensors for O2 are produced nowadays in large quantities in industry. Fields of application include sensing of O2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology.
منابع مشابه
Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications.
We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on addi...
متن کاملHeteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing.
Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectro...
متن کاملA Phosphorescent Iridium(III) Complex‐Modified Nanoprobe for Hypoxia Bioimaging Via Time‐Resolved Luminescence Microscopy
Oxygen plays a crucial role in many biological processes. Accurate monitoring of oxygen level is important for diagnosis and treatment of diseases. Autofluorescence is an unavoidable interference in luminescent bioimaging, so that an amount of research work has been devoted to reducing background autofluorescence. Herein, a phosphorescent iridium(III) complex-modified nanoprobe is developed, wh...
متن کاملTiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application
The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...
متن کاملElectrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes
The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...
متن کامل